By Topic

Acoustic Analysis of Single-Walled Carbon Nanotube-based Vacuum Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Zhang ; Peh-Tung Sah MEMS Res. Center, Xiamne Univ., Fujian ; Hang Guo

In this paper, the acoustic wave propagation of single walled carbon nanotube (SWCNT) is investigated with a look into their applications in vacuum sensors at the microscale. First, the carbon nanotube in fixed-free is simulated by a continuum elastic shell modeling to analyze to the wave propagation of single walled carbon nanotubes. The sensing principle of the single-walled carbon nanotube-based vacuum sensor is based on the resonant frequency shift of a carbon nanotube acoustic bridge driven by resonant ultrasound spectroscopy (RUS) when it is subjected to sub-atmosphere force or gas pressure. The results indicate that the quality factor of the SWCNT bridge can be very high. The simulation analysis results show that the modeling approach is appropriated to describe the acoustic wave propagation of SWNT, which may be adopted as a theoretical reference for vacuum sensor design.

Published in:

Nano/Micro Engineered and Molecular Systems, 2007. NEMS '07. 2nd IEEE International Conference on

Date of Conference:

16-19 Jan. 2007