By Topic

On-chip Temperature Sensing and Control for Cell Immobilization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Ching Lin ; Dept. of Bioeng. & Robotics, Tohoku Univ. ; Yamanishi, Y. ; Arai, F.

In this study, a temperature sensing and controlling microfluid chip has been developed for cell immobilization using a thermo-sensitive hydrogel (PNIPAAm). The PDMS-based micromagnetic stirrers make microscale fluid mixing to provide the temperature stability in the microchannel. The ITO (indium tin oxide) microheaters and thermosensors, fabricated by micromachining technology, perform in situ fluid heating and feedback temperature control. All temperature sensing and controlling devices are integrated on a chip, in which yeast cell immobilization is performed by the gelation of the PNIPAAm solution.

Published in:

Nano/Micro Engineered and Molecular Systems, 2007. NEMS '07. 2nd IEEE International Conference on

Date of Conference:

16-19 Jan. 2007