Cart (Loading....) | Create Account
Close category search window
 

Effect of Channel Width on the Electrical Characteristics of Amorphous/Nanocrystalline Silicon Bilayer Thin-Film Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hatzopoulos, A.T. ; Dept. of Phys., Aristotle Univ., Thessaloniki ; Arpatzanis, N. ; Tassis, D.H. ; Dimitriadis, C.A.
more authors

The effect of the channel width dimension on the electrical characteristics of amorphous/nanocrystalline silicon bilayer thin-film transistors (TFTs) is investigated. For comparison, nanocrystalline silicon monolayer TFTs are also studied. The experimental results show that the leakage current is decreased and the back-channel conduction is suppressed in bilayer channel devices. The overall results demonstrate that the performance of bilayer TFTs is enhanced with decreasing the channel width, which is attributed to the corner effect

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.