By Topic

Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azad Naeemi ; Georgia Inst. of Technol., Atlanta, GA ; James D. Meindl

Graphene nanoribbons (GNRs), which are single graphene sheets, share many of the fascinating electronic, mechanical, and thermal properties of carbon nanotubes. Compact physical models for conductance of GNRs as functions of chirality, width, Fermi level, and the type of electron scatterings at the edges are presented. For widths below 8 nm, the models demonstrate that single-layer GNRs can potentially outperform copper wires with unity aspect ratio

Published in:

IEEE Electron Device Letters  (Volume:28 ,  Issue: 5 )