By Topic

Optimal Design and Reduced Threshold in Vertically Emitting Circular Bragg Disk Resonator Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiankai Sun ; Dept. of Appl. Phys., California Inst. of Technol., Pasadena, CA ; Scheuer, J. ; Yariv, A.

We derive a comprehensive coupled-mode theory, including resonant vertical emission effects, for the analysis of nonperiodic circular Bragg lasers. We derive the governing characteristic equation for such lasers, yielding the threshold gain level and the resonance frequency. By reducing the threshold gain and maximizing the ratio of "useful signal" to the power leakage, we find optimum conditions for vertically emitting circular Bragg microdisk lasers which indicate that low-threshold operation is possible

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 2 )