By Topic

Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Magnetic behavior of polymer-based scanners is studied in detail with emphasis on a new magnetic actuator model and dc deflection experiments. A 30-mum-thick permalloy sheet is plated on a polymer cantilever scanner and actuated using an external coil. Mechanical and magnetic modeling of the device and experimental results are presented. Shape anisotropy of the thin, soft magnetic film is explored for push and pull operation in different configurations. A new magnetic actuator model is developed based on the distributed point-by-point calculation of the magnetostatic moments and forces across the film surface. This effort helps one to obtain generic equations for magnetic force and torque without limiting the use of the model to the case where magnetic material is assumed to be fully saturated. Two-dimensional (2-D) scanning utilizing the orthogonal modes of the scanner, using only one actuation coil is presented

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:13 ,  Issue: 2 )