By Topic

Photonic Crystal-Based MOEMS Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

In this paper, a new class of microoptoelectromechanical system (MOEMS) devices combining photonic crystals (PCs) formed in in-plane waveguiding membranes (in-plane 1-D or 2-D large contrast modulation of the optical index) and a multilayer stack (1-D "vertical" modulation of the optical index) according to the so-called 2.5-D micronanophotonics approach is reported. The operation of the devices is based on the resonant coupling between radiated optical modes and slow Bloch modes waveguided in the particular membranes of the stack, which are laterally patterned to form a PC. Use of high-index contrast PC gratings result in enhanced lateral compactness of the devices. The MOEMS functionality is achieved via micromechanical subwavelength vertical displacement of some of the suspended membranes. Recent demonstrations of devices (including tunable filters and surface-emitting microsources) operating along these principles are presented

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 2 )