Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Engine Fault Analysis: Part II---Parameter Estimation Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sood, Arun K. ; The Computing Research Laboratory, Research Institute for Engineering Sciences, Wayne State University, Detroit, MI 48202. ; Fahs, Ali Amin ; Henein, Naeim A.

The general fault analysis problem can be divided into two parts: fault detection and diagnosis (location). Fourier series, autocorrelation, and other techniques have been used for fault detection. However, these approaches cannot be utilized for locating the faults. In this paper a methodology is presented to locate faulty cylinder(s). The procedure involves the development of a mathematical model of the engine dynamics. This model takes into consideration the cylinder gas pressure, engine inertia, and load. The resultant torque is computed by using parameter estimation techniques. The parameter estimation technique employed can determine time-varying parameters without prior knowledge of the structure of the parameter. In the problem at hand, this is an important requirement. The resultant torque is the net of the cylinder gas torque and the frictional torque. The model and the estimation procedure have been verified by performing tests on a single-cylinder engine. A discriminant function has been defined to classify the performance of each cylinder. Our results indicate that the amplitude of the resultant torque can be used to identify the faulty cylinder(s). We have verified this approach by tests and studies on a six-cylinder engine. In our experiments we have studied cases involving one or two faulty cylinders.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:IE-32 ,  Issue: 4 )