Cart (Loading....) | Create Account
Close category search window
 

Revised Radiometric Calibration Technique for LANDSAT-4 Thematic Mapper Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Murphy, Jennifer M. ; Canada Centre for Remote Sensing, Ottawa, Ont., KlA OY7, Canada Roy Ball Associates, Ottawa, Ont., K2C 2B5, Canada ; Butlin, T. ; Duff, Paul F. ; Fitzgerald, Anthony J.

A technique for the radiometric correction of Landsat-4 Thematic Mapper (TM) data was proposed by the Canada Centre for Remote Sensing (CCRS) in 1982, and two reports defining the method and discussing preliminary results were presented by CCRS at the Landsat-4 Scientific Characterization Early Results Symposium [1] and [2]. Subsequent detailed observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data stream on High Density Tape have highlighted in the proposed method, major shortcomings, which if left uncorrected, can cause severe radiometric striping in the output product. Observations presented here show that there are random fluctuations in the background level for spectral band 1 of magnitudes ranging from 2 to 3.5 digital numbers (DN), depending on detector number. Similar variability is observed in all the other reflective bands, but with smaller magnitude in the range 0.5 to 2.5 DN. More significantly, it is shown how measurements of the dc background level can be correlated with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique, which includes corrections for a line-dependent offset in addition to the scene-dependent gain and offset, can be incorporated into an operational environment.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:GE-22 ,  Issue: 3 )

Date of Publication:

May 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.