By Topic

Feature Selection with Limited Training Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kalayeh, Hooshmand Mahmood ; Object Recognition Systems, Inc., Princeton, NJ 08540 ; Muasher, Marwan Jamil ; Landgrebe, D.A.

A criterion which measures the quality of the estimates of the parameters of multivariate normal distributions for two class problems when limited number of samples are available is developed. This criterion predicts if the Hughes phenomenon occurs. The maximum number of features which does not degrade the accuracy of the classifier is then predicted. Experimental results regarding the Hughes phenomenon are included. Also presented is an example where the maximum number of features at each node in the binary tree classifier is predicted and compared with the maximum likelihood classifier. Index Terms-Training samples, multivariate normal distribution, Hughes phenomenon, feature selection, maximum likelihood classifier, bianry tree classifier.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:GE-21 ,  Issue: 4 )