Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

The Covariance Least-Squares Algorithm for Spectral Estimation of Processes of Short Data Length

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nikias, Chrysostomos L. ; Department of Electrical Engineering and Computer Science, The University of Connecticut, Storrs, CT 06268 ; Scott, P.D.

A new method for generating the autoregressive (AR) process parameters for spectral estimation is introduced. The method fits AR models to the data optimally in the sense of minimizing the sum of squares of the error covariance function within the model prediction region, and is thus designated as the Covariance Least-Squares (CLS) algorithm. This minimization is shown to be identical with minimizing the weighted average one-step, linear prediction errors with adaptive weights corresponding to the energy of the data within the prediction region. The CLS algorithm is compared to the Least-Squares (LS) algorithm [1], [2] by simulation and asymptotic properties. It is shown that the CLS method combines all the desirable properties of the comparison algorithm with improved robustness in the presence of nonstationarity, namely, additive transients and envelope modulation. It is also shown that the CLS algorithm provides asymptotically unbiased AR parameters, a property also shared by the comparison LS algorithm.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:GE-21 ,  Issue: 2 )