By Topic

An Application of Syntactic Pattern Recognition to Seismic Discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liu, Hsi-Ho ; Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33124 ; King-Sun Fu

Two syntactic methods for the recognition of seismic waveforms are presented in this paper. The seismic waveforms are represented by strings of primitives. Primitive extraction is based on cluster analysis. Finite-state grammars are inferred from the training samples. The nearest-neighbor decision rule and error-correcting finite-state parsers are used for pattern classification. While both show equal recognition performance, the nearest-neighbor rule is much faster in computation speed. The classification of real data for earthquake/explosion is presented as an application example.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:GE-21 ,  Issue: 2 )