By Topic

Determination of Rain Rate from a Spaceborne Radar Using Measurements of Total Attenuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Robert Meneghini ; NASA Goddard Space Flight Center, Greenbelt, MD 20771 ; Jerome Eckerman ; David Atlas

Several experimental and theoretical studies have shown that path-integrated rain rates can be determined by means of a direct measurement of attenuation. For ground-based radars, this is done by measuring the backscattering cross section of a fixed target in the presence and absence of rain along the radar beam. A ratio of the two measurements yields a factor proportional to the attenuation from which the average rain rate can be deduced. In this paper, we extend the technique to spaceborne radars by choosing the ground as a reference target. The technique is also generalized so that both the average and range-profiled rain rates can be determined. The accuracies of the resulting estimates are evaluated for a narrow-beam radar located on a low earth-orbiting satellite.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:GE-21 ,  Issue: 1 )