Cart (Loading....) | Create Account
Close category search window
 

A Probabilistic Insulation Life Model for Combined Thermal-Electrical Srresses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Montanari, G.C. ; Istituto di Elettrotecnica Industriale University of Bologna Italy ; Cacciari, M.

The Weibull distribution is widely used in statistical problems related to aging of solid insulating materials subjected to electrical stress. The main object of this paper is to explain the Weibull probability function in such a way that it can be applied to the statistical analysis of the risk of failure for solid insulating materials or structures subjected to single or combined (in particular thermal-electrical) stress situations. For this purpose, appropriate expressions for the scale and shape parameters of the two-parameter Weibull function are proposed, starting from a model for combined-life, based on the inverse power model for electrical life and the Arrhenius relationship for thermal life. The agreement of the statistical model thus obtained has been verified by means of experimental tests carried out on Low-Density Polyethylene.

Published in:

Electrical Insulation, IEEE Transactions on  (Volume:EI-20 ,  Issue: 3 )

Date of Publication:

June 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.