By Topic

Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Feng Zhu ; Dept. of Autom., Tsinghua Univ., Beijing ; Xian-Da Zhang ; Ya-Feng Hu ; Deguang Xie

This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 5 )