By Topic

Unconditional Maximum Likelihood Performance at Finite Number of Samples and High Signal-to-Noise Ratio

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Renaux, A. ; SATIE Lab., Ecole Normale Superieure of Cachan ; Forster, P. ; Boyer, E. ; Larzabal, P.

This correspondence deals with the problem of estimating signal parameters using an array of sensors. In source localization, two main maximum-likelihood methods have been introduced: the conditional maximum-likelihood method which assumes the source signals nonrandom and the unconditional maximum-likelihood method which assumes the source signals random. Many theoretical investigations have been already conducted for the large samples statistical properties. This correspondence studies the behavior of unconditional maximum likelihood at high signal-to-noise ratio for finite samples. We first establish the equivalence between the unconditional and the conditional maximum-likelihood criterions at high signal-to-noise ratio. Then, thanks to this equivalence we prove the non-Gaussianity and the non-efficiency of the unconditional maximum-likelihood estimator. We also rediscover the closed-form expressions of the probability density function and of the variance of the estimates in the one source scenario and we derive a closed-form expression of this estimator variance in the two sources scenario

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 5 )