By Topic

A Theoretical Framework for Iterative Synchronization Based on the Sum–Product and the Expectation-Maximization Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cdric Herzet ; Commun. Lab., Univ. Catholique de Louvain, Louvain-la-Neuve ; Valry Ramon ; Luc Vandendorpe

This paper deals with maximum-likelihood (ML) estimation of synchronization parameters for coded transmission systems. In particular, we present a unified framework based on both the sum-product (SP) algorithm and the expectation-maximization (EM) algorithm for the design of iterative synchronizers. The proposed approach is shown to encompass some known iterative synchronizers. In particular, we revisit a previously proposed framework based on the EM algorithm only by means of our "SP-EM" approach. The performance of the proposed synchronization method is assessed in terms of mean-square error and bit-error rate by simulation results. In particular, we consider the joint synchronization of the timing epoch and the carrier phase offset in the case of convolutionally coded and turbo-coded transmissions

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 5 )