Cart (Loading....) | Create Account
Close category search window
 

Detecting Encrypted Stepping-Stone Connections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ting He ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY ; Lang Tong

Stepping-stone attacks are often used by network intruders to hide their identities. In a stepping-stone attack, attacking commands are sent indirectly to the victim through a chain of compromised hosts acting as "stepping stones." In defending against such attacks, it is necessary to detect stepping-stone connections at the compromised hosts. The use of encrypted connections by the attacker complicates the detection problem and the attacker's active timing perturbation and insertion of chaff make it even more challenging. This paper considers strategies to identify stepping-stone connections when the attacker is able to encrypt the attacking packets and perturb their timing. Furthermore, the attacker can also add chaff packets in the attacking stream. The paper first considers stepping-stone connections subject to packet-conserving transformations by the attacker. Two activity-based algorithms are proposed to detect stepping-stone connections with bounded memory or bounded delay perturbation, respectively. These algorithms are proven to have exponentially decaying false alarm probabilities if normal traffic can be modelled as Poisson processes. It is shown that the proposed algorithms improve the performance of an existing stepping-stone detection algorithm. This paper then addresses the detection of stepping-stone connections with both timing perturbation and chaff. Robust algorithms are developed to deal with chaff evasion. It is proven that the proposed robust algorithms can tolerate a number of chaff packets proportional to the size of the attacking traffic, and have vanishing false alarm probabilities for Poisson traffic. Simulations using synthetic data are used to validate the theoretical analysis. Further results using actual Internet traces are shown to demonstrate the performance of the proposed algorithms

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.