By Topic

Electromagnetic Propagation of GPR Signals in Martian Subsurface Scenarios Including Material Losses and Scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

A study on the electromagnetic propagation in various models of the Martian subsurface is performed with a relevance to ground penetrating radar (GPR) operating onboard rover missions. Measurements of the electromagnetic properties of Mars soil simulants are obtained; on this basis, the attenuation features of the GPR signals are estimated, including both electric and magnetic losses. The effect on propagation of inhomogeneities inside the soil is also taken into account by means of a specific model with randomly distributed scatterers. The GPR performance in terms of resolution and maximum penetration depth is evaluated in the considered scenarios for different operating frequencies, thus providing a basic information for the design of systems for future subsurface sounding investigations on Mars

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 5 )