Cart (Loading....) | Create Account
Close category search window

Increasing the Existence of Very Shallow-Water LIDAR Measurements Using the Red-Channel Waveforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pe'eri, S. ; Center for Coastal & Ocean Mapping, New Hampshire Univ., Durham, NH ; Philpot, W.

Mapping shallow-water bathymetry with acoustic techniques is complicated and expensive. The environmental parameters in shallow-water (<2 m) areas become more variable and greatly impact the depth extraction from the survey measurements. Current airborne light detection and ranging (LIDAR) bathymetry surveying in shallow-water depths uses green-channel waveforms to measure the water depth. Unfortunately, due to difficulties in distinguishing between the surface and bottom return of the water column, the timing of the bottom return is often ambiguous. Furthermore, the water often becomes optically "dirty" due to turbulence at these shallow depths. Therefore, it is common to find coastal areas that lack any measured depths. This paper presents a novel approach for measuring water depths in these shallow coastal waters with airborne LIDAR. Observations of the red-channel waveforms show that the waveforms are divided into two groups, namely: (1) waveforms in deep waters (>2 m) whose shape is invariant with respect to the water depth and (2) waveforms in shallow-water depths that show a change in shape as a function of the depth in the water column. The data for this study are from the US Geological Survey LIDAR surveys of Lake Tahoe, CA, and Lake Michigan, using a SHOALS-400 LIDAR system

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.