Cart (Loading....) | Create Account
Close category search window

A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Inglada, J. ; CNES, Toulouse ; Mercier, G.

In this paper, we present a new similarity measure for automatic change detection in multitemporal synthetic aperture radar images. This measure is based on the evolution of the local statistics of the image between two dates. The local statistics are estimated by using a cumulant-based series expansion, which approximates probability density functions in the neighborhood of each pixel in the image. The degree of evolution of the local statistics is measured using the Kullback-Leibler divergence. An analytical expression for this detector is given, allowing a simple computation which depends on the four first statistical moments of the pixels inside the analysis window only. The proposed change indicator is compared to the classical mean ratio detector and also to other model-based approaches. Tests on the simulated and real data show that our detector outperforms all the others. The fast computation of the proposed detector allows a multiscale approach in the change detection for operational use. The so-called multiscale change profile (MCP) is introduced to yield change information on a wide range of scales and to better characterize the appropriate scale. Two simple yet useful examples of applications show that the MCP allows the design of change indicators, which provide better results than a monoscale analysis

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.