Cart (Loading....) | Create Account
Close category search window

Submillimeter Accuracy of InSAR Time Series: Experimental Validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ferretti, A. ; DIIAR, Politecnico di Milano, Milan ; Savio, G. ; Barzaghi, R. ; Borghi, A.
more authors

This paper presents the results of a blind experiment that is performed using two pairs of dihedral reflectors. The aim of the experiment was to demonstrate that interferometric synthetic aperture radar (InSAR) measurements can indeed allow a displacement time series estimation with submillimeter accuracy (both in horizontal and vertical directions), provided that the data are properly processed and the impact of in situ as well as atmospheric effects is minimized. One pair of dihedral reflectors was moved a few millimeters between SAR acquisitions, in the vertical and east-west (EW) directions, and the ground truth was compared with the InSAR data. The experiment was designed to allow a multiplatform and multigeometry analysis, i.e., each reflector was carefully pointed in order to be visible in both Envisat and Radarsat acquisitions. Moreover, two pairs of reflectors were used to allow the combination of data gathered along ascending and descending orbits. The standard deviation of the error is 0.75 mm in the vertical direction and 0.58 mm in the horizontal (EW) direction. GPS data were also collected during this experiment in order to cross-check the SAR results

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.