By Topic

Pulse Shape Improvement in Core-Type High-Voltage Pulse Transformers With Auxiliary Windings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Redondo, L.M. ; Instituto Superior de Engenharia de Lisboa, Lisbon ; Silva, J.F. ; Margato, E.

High-voltage pulsed power technologies are rapidly emerging as a key to efficient and flexible use of electrical power for many industrial applications. One of the most important elements in high-voltage pulse-generating circuit technology is the transformer, generally used to further increase the pulse output voltage level. However, its nonideal behavior has significant influence on the output pulse shape. The most attractive winding configuration for high-voltage, the core-type transformer with primary and secondary on different core legs, is seldom used in pulsed applications, because of its weak magnetic coupling between windings, which would result in a slow-rising output voltage pulse. This paper shows that auxiliary windings, suitably positioned and connected, provide a dramatic improvement in the pulse rise time in core-type high-voltage pulse transformers. The paper derives a mathematical model and uses it to describe the observed behavior of the transformer with auxiliary windings. It discusses experimental results, obtained from a high-voltage test transformer associated with a high-voltage pulse generating circuit, and the simulation results obtained from the numerical evaluation of the developed differential equations implemented in Matlab and taking into account the measured transformer parameters

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 5 )