By Topic

Designing Static Fields for Unilateral Magnetic Resonance by a Scalar Potential Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marble, A.E. ; Dept. of Electr. & Comput. Eng., New Brunswick Univ., Fredericton, NB ; Mastikhin, I.V. ; Colpitts, B.G. ; Balcom, B.J.

We present a method for designing single-sided magnets suitable for unilateral magnetic resonance (UMR) measurements. The method uses metal pole pieces to shape the field from permanent magnets in a target region. The pole pieces are shaped according to solutions to Laplace's equation, and can be designed using a combination of analytical methods and numerical optimization. The design leads to analytical expressions for the pole piece shapes and magnetic field. Here, we develop the method in Cartesian, polar, and spherical coordinates, and discuss the merits of each system. Finite magnet size has a substantial effect on the field quality in many cases, according to our simulations. We found that in order to achieve a compact magnet in which the static field closely matches that specified, a full 3-D design approach is necessary. A magnet designed by our method produces a static field with a constant gradient over a region 2 cm in diameter and 2 mm thick. This leads to a compact cylindrical magnet just over 11 cm in diameter, topped with a single metal pole piece. The design is validated through simulation. The simulated field is found to agree closely with that specified analytically through the design procedure

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 5 )