By Topic

Intelligent Adaptive Backstepping Control System for Magnetic Levitation Apparatus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien ; Li-Tao Teng ; Po-Huang Shieh

We propose an intelligent adaptive backstepping control system using a recurrent neural network (RNN) to control the mover position of a magnetic levitation apparatus to compensate for uncertainties, including friction force. First, we derive a dynamic model of the magnetic levitation apparatus. Then, we suggest an adaptive backstepping approach to compensate disturbances, including the friction force, occurring in the motion control system. To further increase the robustness of the magnetic levitation apparatus, we propose an RNN estimator for the required lumped uncertainty in the adaptive backstepping control system. We further propose an online parameter training methodology, derived by the gradient descent method, to increase the learning capability of the RNN. The effectiveness of the proposed control scheme has been verified by experiment. With the proposed adaptive backstepping control system using RNN, the mover position of the magnetic levitation apparatus possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic trajectories

Published in:

IEEE Transactions on Magnetics  (Volume:43 ,  Issue: 5 )