By Topic

Efficient WFST-Based One-Pass Decoding With On-The-Fly Hypothesis Rescoring in Extremely Large Vocabulary Continuous Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hori, T. ; NTT Commun. Sci. Labs., NTT Corp., Kyoto ; Hori, C. ; Minami, Y. ; Nakamura, A.

This paper proposes a novel one-pass search algorithm with on-the-fly composition of weighted finite-state transducers (WFSTs) for large-vocabulary continuous-speech recognition. In the standard search method with on-the-fly composition, two or more WFSTs are composed during decoding, and a Viterbi search is performed based on the composed search space. With this new method, a Viterbi search is performed based on the first of the two WFSTs. The second WFST is only used to rescore the hypotheses generated during the search. Since this rescoring is very efficient, the total amount of computation required by the new method is almost the same as when using only the first WFST. In a 65k-word vocabulary spontaneous lecture speech transcription task, our proposed method significantly outperformed the standard search method. Furthermore, our method was faster than decoding with a single fully composed and optimized WFST, where our method used only 38% of the memory required for decoding with the single WFST. Finally, we have achieved high-accuracy one-pass real-time speech recognition with an extremely large vocabulary of 1.8 million words

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 4 )