By Topic

Joint Detection and Tracking of Time-Varying Harmonic Components: A Flexible Bayesian Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Corentin Dubois ; IRCCyN, Nantes ; Manuel Davy

This paper addresses the joint estimation and detection of time-varying harmonic components in audio signals. We follow a flexible viewpoint, where several frequency/amplitude trajectories are tracked in spectrogram using particle filtering. The core idea is that each harmonic component (composed of a fundamental partial together with several overtone partials) is considered a target. Tracking requires to define a state-space model with state transition and measurement equations. Particle filtering algorithms rely on a so-called sequential importance distribution, and we show that it can be built on previous multipitch estimation algorithms, so as to yield an even more efficient estimation procedure with established convergence properties. Moreover, as our model captures all the harmonic model information, it actually separates the harmonic sources. Simulations on synthetic and real music data show the interest of our approach

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:15 ,  Issue: 4 )