By Topic

A Study of Variable-Parameter Gaussian Mixture Hidden Markov Modeling for Noisy Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cui, Xiaodong ; Dept. of Electr. Eng., California Univ., Los Angeles, CA ; Gong, Yifan

To improve recognition performance in noisy environments, multicondition training is usually applied in which speech signals corrupted by a variety of noise are used in acoustic model training. Published hidden Markov modeling of speech uses multiple Gaussian distributions to cover the spread of the speech distribution caused by noise, which distracts the modeling of speech event itself and possibly sacrifices the performance on clean speech. In this paper, we propose a novel approach which extends the conventional Gaussian mixture hidden Markov model (GMHMM) by modeling state emission parameters (mean and variance) as a polynomial function of a continuous environment-dependent variable. At the recognition time, a set of HMMs specific to the given value of the environment variable is instantiated and used for recognition. The maximum-likelihood (ML) estimation of the polynomial functions of the proposed variable-parameter GMHMM is given within the expectation-maximization (EM) framework. Experiments on the Aurora 2 database show significant improvements of the variable-parameter Gaussian mixture HMMs compared to the conventional GMHMMs

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 4 )