By Topic

Validating text mining results on protein-protein interactions using gene expression profiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deyu Zhou ; Nanyang Technol. Univ., Singapore ; Yulan He ; Chee Keong Kwoh

Protein-protein interactions referring to the associations of protein molecules are crucial for many biological functions. Since most knowledge about them still hides in biological publications, there is an increasing focus on mining information from the vast amount of biological literature such as MedLine. Many approaches, such as pattern matching, shallow parsing and deep parsing, have been proposed to automatically extract protein-protein interaction information from text sources, with however limited success. Moreover, to the best of our knowledge, none of the existing approaches have performed automatic validation on the mining results. In this paper, we describe a novel framework in which text mining results are automatically validated using the knowledge mined from gene expression profiles. A probability model is proposed to score the confidence of protein-protein interactions based on both text mining results and gene expression profiles. Experimental results are presented to show the feasibility of this framework.

Published in:

2006 International Conference on Biomedical and Pharmaceutical Engineering

Date of Conference:

11-14 Dec. 2006