By Topic

Direct and Indirect 3-D Reconstruction from Opti-Acoustic Stereo Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Sekkati ; University of Miami, USA ; S. Negahdaripour

Utilization of an acoustic camera for range measurements is a significant advantage for 3D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of visual and acoustic image correspondences is described in terms of conic sections and trigonometric functions. In this paper, we propose and analyze a number of methods based on direct and indirect approaches that provide insight on the merits of the new imaging and 3D object reconstruction paradigm. We have devised certain indirect methods, built on a regularization formulation, to first compute from noisy correspondences maximum likelihood estimates that satisfy the epipolar geometry. The 3D target points can then be determined from a number of closed-form solutions applied to these ML estimates. An alternative direct approach is also presented for 3D reconstruction directly from noisy correspondences. Computer simulations verify consistency between the analytical and experimental reconstruction SNRs - the criterion applied in performance assessment of these various solutions.

Published in:

3D Data Processing, Visualization, and Transmission, Third International Symposium on

Date of Conference:

14-16 June 2006