Cart (Loading....) | Create Account
Close category search window
 

EKF-Based Recursive Dual Estimation of Structure & Motion from Stereo Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hongsheng Zhang ; Electr. & Comput. Eng. Dept., Univ. of Miami, Coral Gables, FL ; Negahdaripour, S.

Extended Kalman filters (EKF) have been proposed to estimate ego-motion and to recursively update scene structure in the form of 3-D positions of selected prominent features from motion and stereo sequences. Previous methods typically accommodate no more than a few dozen features for real-time processing. To maintain motion estimation accuracy, this calls for high contrast images to compute image feature locations with precision. Within manmade environments, various prominent corner points exist that can be extracted and tracked with required accuracy. However, prominent features are more difficult to localize precisely in natural scenes. Statistically, more feature points become necessary to maintain the same level of motion estimation accuracy and robustness. However, this imposes a computational burden beyond the capability of EKF-based techniques for real-time processing. A sequential dual EKF estimator utilizing stereo data is proposed for improved computation efficiency. Two important issues, unbiased estimation and stochastic stability are addressed. Furthermore, the dynamic feature set is handled in a more effective, efficient and robust way. Experimental results to demonstrate the merits of the new theoretical and algorithmic developments are presented.

Published in:

3D Data Processing, Visualization, and Transmission, Third International Symposium on

Date of Conference:

14-16 June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.