By Topic

Low-density generator matrix codes for indoor and markov channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hanqing Lou ; Dept. of Electr. Eng., Delaware Univ., Newark, DE ; Garcia-Frias, J.

We propose a modified algorithm for decoding of linear codes with low-density generator matrix (LDGM codes) over finite-state binary Markov channels. In order to avoid error floors, a serial concatenation of two LDGM codes is utilized. The hidden Markov model representing the channel is incorporated into the graph corresponding to the code, and the message passing algorithm is modified accordingly. The proposed scheme clearly outperforms systems in which the channel statistics are not exploited in the decoding process, allowing reliable communication at rates which are above the capacity of a memoryless channel with the same stationary bit error probability as the Markov channel. The proposed technique can be successfully applied for real wireless channels that can be modeled with hidden Markov models, such as indoor channels. In this case, the hidden Markov model representing the wireless channel can be estimated jointly with the decoding process

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 4 )