By Topic

A Delay Model for Networks-on-Chip Output-Queuing Router

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elmiligi, H. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC ; El-Kharashi, M.W. ; Gebali, F.

Routers are vital modules in any networks-on-chip (NoC)-based design. To achieve an adequate performance, routers must be designed to match network inter-module traffic. One of the most important methods to accomplish this matching is to minimize the router delay. An early estimation of the router delay is critically needed to help designers specify the system timing constrains at higher levels of abstraction. In this paper, we present a delay model for NoC routers and explain how it can be used to study the effect of changing the queue size and the number of ports on the router delay and throughput. The novelty in our model is that it can be applied to techniques that use both clock edges to achieve low latency and, hence, improve the performance. The proposed model returns the router delay in terms of number of clock cycles as a technology-independent representation

Published in:

System-on-Chip for Real-Time Applications, The 6th International Workshop on

Date of Conference:

Dec. 2006