Cart (Loading....) | Create Account
Close category search window
 

Coded Unitary Space–Time Modulation With Iterative Decoding: Error Performance and Mapping Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tran, N.H. ; Dept. of Electr. Eng., Saskatchewan Univ., Saskatoon, Sask. ; Nguyen, H.H. ; Le-Ngoc, Tho

This paper studies the bit error probability of coded unitary space-time modulation with iterative decoding where neither the transmitter nor the receiver knows the channel fading coefficients. The tight error bound with respect to the asymptotic performance is first analytically derived for any given unitary constellation and mapping rule. Design criteria regarding the choice of unitary constellation and mapping are then established. Furthermore, using the unitary constellation obtained from orthogonal design with quadrature phase-shift keying (QPSK or 4-PSK) and 8-PSK, two different mapping rules are proposed. The first mapping rule gives the most suitable mapping for systems that do not implement iterative processing, which is similar to a Gray mapping in coherent channels. The second mapping rule yields the best mapping for systems with iterative decoding. In particular, analytical and simulation results show that with the proposed mappings of the unitary constellations obtained from orthogonal designs, the asymptotic error performance of the iterative systems can closely approach a lower bound which is applicable to any unitary constellation and mapping

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.