By Topic

Comparison of Pulse Shape Discrimination Methods for Phoswich and CsI:Tl Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandrikamohan, P. ; Environ. Eng. & Sci. Dept., Clemson Univ., SC ; DeVol, T.A.

Comparison of four pulse shape discrimination (PSD) methods was performed on the same digitized pulses from two different detector configurations. Beta/gamma discrimination of 90Sr and 137Cs was performed using a phoswich detector made of BC400 and BGO scintillators. Alpha/gamma discrimination of 210Po and 137Cs was performed using a CsI:Tl scintillation crystal. The pulse waveforms were digitized with a DGF-4C and analyzed offline with IGOR Pro software. The four pulse shape discrimination methods that were compared include: constant fraction discrimination (CFD), rise time discrimination (RTD), constant time discrimination (CTD), and charge comparison (CC). The CTD method resulted in a spillover of 9.2% (Figure of Merit, FOM=3.9) and 0.25% (FOM=3.2), while the CC method resulted in a spillover of 9.9% (FOM=3.3) and 0.033% (FOM=3.7) for the phoswich and CsI:Tl detectors, respectively. Although the CTD results in the lowest spillover for high signal-to-noise pulses, the optimized CC method, as implemented here, appears to be the best PSD method overall. Analysis of the reciprocal of the pulse shape data typically resulted in a significantly higher FOM than conventional methods with no reduction in spillover. This simple mathematical transformation of the pulse shape data illustrates that the FOM may not be a good scheme for the quantification of PSD

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 2 )