By Topic

Blind Identification of MIMO Channels Using Optimal Periodic Precoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-An Lin ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu ; Chen, Yi-Sheng

We propose a method for blind identification of multiple-input mutiple-out (MIMO) finite-impulse response (FIR) channels that exploits cyclostationarity of the received data induced at the transmitters by periodic precoding. It is shown that, by properly choosing the precoding sequence, the MIMO FIR transfer functions, with Mt inputs and Mr outputs, can be identified up to a unitary matrix ambiguity. The transfer functions need not be irreducible or column reduced, and there can be more outputs (MrgesMt) or more inputs (Mr<Mt). The method exploits the linear relation between the covariance matrix of the received data and the "channel product matrices". The method is shown to be robust with respect to channel-order overestimation. The proposed algorithm requires solving linear equations and computing the nonzero eigenvalues and eigenvectors of a Hermitian positive semidefinite matrix. The performance of the algorithm, and indeed the identifiability, depends on the choice of the precoding sequence. We propose a method for optimal selection of the precoding sequence which takes into account the effect of additive channel noise and numerical error in covariance matrix estimation. Simulation results are used to demonstrate the performance of the algorithm

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 4 )