Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

SDU: A Semidefinite Programming-Based Underestimation Method for Stochastic Global Optimization in Protein Docking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paschalidis, I.C. ; Dept. of Electr. & Comput. Eng., Boston Univ., MA ; Yang Shen ; Vakili, P. ; Vajda, S.

This paper introduces a new stochastic global optimization method targeting protein-protein docking problems, an important class of problems in computational structural biology. The method is based on finding general convex quadratic underestimators to the binding energy function that is funnel-like. Finding the optimum underestimator requires solving a semidefinite programming problem, hence the name semidefinite programming-based underestimation (SDU). The underestimator is used to bias sampling in the search region. It is established that under appropriate conditions SDU locates the global energy minimum with probability approaching one as the sample size grows. A detailed comparison of SDU with a related method of convex global underestimator (CGU), and computational results for protein-protein docking problems are provided

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 4 )