By Topic

LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Han Ho Choi ; Dept. of Electr. Eng., Dongguk Univ., Seoul

We propose a linear matrix inequality (LMI)-based sliding surface design method for integral sliding-mode control of mismatched uncertain systems. The uncertain system under consideration may have mismatched norm bounded uncertainties in the state matrix as well as the input matrix. We give a sufficient condition for the existence of a sliding surface guaranteeing asymptotic stability of the full order sliding mode dynamics. We also give an LMI characterization of the sliding surface, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Additionally, we give an LMI condition of sliding surfaces guaranteeing the alpha-stability constraint. Finally, we give a simulation result to show the effectiveness of our method

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 4 )