Cart (Loading....) | Create Account
Close category search window
 

EU Megawatt-Class 140-GHz CW Gyrotron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

23 Author(s)
Thumm, M. ; Forschungszentrum Karlsruhe ; Alberti, S. ; Arnold, A. ; Brand, P.
more authors

The first series tube of the gyrotrons for the 10-MW electron cyclotron resonance heating system of the stellarator W7-X was tested at Forschungszentrum Karlsruhe (FZK) and yielded a total output power of 0.98 MW, with an efficiency of 31% (without a single-stage depressed collector) in short-pulse operation and of 0.92 MW in pulses of 180 s (efficiency of almost 45% at a depression voltage of 29 kV). The Gaussian mode output power was 0.91 MW. The pulselength at full power (1 MW) is limited at FZK by the available power supply. At a reduced electron beam current, it is possible to operate at longer pulselengths. At an output power of 0.57 MW (electron beam current of 29 A), the pulselength was increased to 1893 s. There was no physical reason for a limitation of this pulse: The pressure increase during the pulse was less than a factor of two and ended up at a very low value in the 10-9 mbar range. The tube was delivered to Max-Planck-Institut fuumlr Plasmaphysik Greifswald for tests at full power and up to 30-min pulselength. The Gaussian mode RF output power, measured in a calorimetric load after a 25-m-long quasi-optical transmission line (seven mirrors), was 0.87 MW at a total output power of 0.92 MW in 30-min pulses. Again, no indications for a limitation in pulselength were found. The second series tube was tested in short-pulse operation and showed a strange behavior concerning a mode hopping which has not yet been understood. The third series gyrotron delivers up to now 0.65 MW at a pulse duration of 180 s. Preliminary operation of the prototype tube as a two-frequency gyrotron delivered 0.41 MW in 10-s pulses at 103.8 GHz (TE21,6 mode)

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 2 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.