By Topic

Texture- and Multiple-Template-Based Algorithm for Lossless Compression of Error-Diffused Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
YongHuai Huang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei ; KuoLiang Chung

Recently, several efficient context-based arithmetic coding algorithms have been developed successfully for lossless compression of error-diffused images. In this paper, we first present a novel block- and texture-based approach to train the multiple-template according to the most representative texture features. Based on the trained multiple template, we next present an efficient texture- and multiple-template-based (TM-based) algorithm for lossless compression of error-diffused images. In our proposed TM-based algorithm, the input image is divided into many blocks and for each block, the best template is adaptively selected from the multiple-template based on the texture feature of that block. Under 20 testing error-diffused images and the personal computer with Intel Celeron 2.8-GHz CPU, experimental results demonstrate that with a little encoding time degradation, 0.365 s (0.901 s) on average, the compression improvement ratio of our proposed TM-based algorithm over the joint bilevel image group (JBIG) standard [over the previous block arithmetic coding for image compression (BACIC) algorithm proposed by Reavy and Boncelet is 24%] (19.4%). Under the same condition, the compression improvement ratio of our proposed algorithm over the previous algorithm by Lee and Park is 17.6% and still only has a little encoding time degradation (0.775 s on average). In addition, the encoding time required in the previous free tree-based algorithm is 109.131 s on average while our proposed algorithm takes 0.995 s; the average compression ratio of our proposed TM-based algorithm, 1.60, is quite competitive to that of the free tree-based algorithm, 1.62

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 5 )