By Topic

Comparative Study of Semi-Implicit Schemes for Nonlinear Diffusion in Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Julio M. Duarte-Carvajalino ; Lab. of Appl. Remote Sensing & Image Process., Puerto Rico Univ., Mayaguez ; Paul E. Castillo ; Miguel Velez-Reyes

Nonlinear diffusion has been successfully employed over the past two decades to enhance images by reducing undesirable intensity variability within the objects in the image, while enhancing the contrast of the boundaries (edges) in scalar and, more recently, in vector-valued images, such as color, multispectral, and hyperspectral imagery. In this paper, we show that nonlinear diffusion can improve the classification accuracy of hyperspectral imagery by reducing the spatial and spectral variability of the image, while preserving the boundaries of the objects. We also show that semi-implicit schemes can speedup significantly the evolution of the nonlinear diffusion equation with respect to traditional explicit schemes

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 5 )