By Topic

Fast Local Rerouting for Handling Transient Link Failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Srihari Nelakuditi ; Dept. of Comput. Sci. & Eng., South Carolina Univ., Columbia, SC ; Sanghwan Lee ; Yinzhe Yu ; Zhi-Li Zhang
more authors

Link failures are part of the day-to-day operation of a network due to many causes such as maintenance, faulty interfaces, and accidental fiber cuts. Commonly deployed link state routing protocols such as OSPF react to link failures through global link state advertisements and routing table recomputations causing significant forwarding discontinuity after a failure. Careful tuning of various parameters to accelerate routing convergence may cause instability when the majority of failures are transient. To enhance failure resiliency without jeopardizing routing stability, we propose a local rerouting based approach called failure insensitive routing. The proposed approach prepares for failures using interface-specific forwarding, and upon a failure, suppresses the link state advertisement and instead triggers local rerouting using a backwarding table. With this approach, when no more than one link failure notification is suppressed, a packet is guaranteed to be forwarded along a loop-free path to its destination if such a path exists. This paper demonstrates the feasibility, reliability, and stability of our approach

Published in:

IEEE/ACM Transactions on Networking  (Volume:15 ,  Issue: 2 )