By Topic

Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dah-Jing Jwo ; Dept. of Commun. & Guidance Eng, Nat. Taiwan Ocean Univ., Keelung ; Sheng-Hung Wang

The well-known extended Kalman filter (EKF) has been widely applied to the Global Positioning System (GPS) navigation processing. The adaptive algorithm has been one of the approaches to prevent the divergence problem of the EKF when precise knowledge on the system models are not available. One of the adaptive methods is called the strong tracking Kalman filter (STKF), which is essentially a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved. Traditional approach for selecting the softening factors heavily relies on personal experience or computer simulation. In order to resolve this shortcoming, a novel scheme called the adaptive fuzzy strong tracking Kalman filter (AFSTKF) is carried out. In the AFSTKF, the fuzzy logic reasoning system based on the Takagi-Sugeno (T-S) model is incorporated into the STKF. By monitoring the degree of divergence (DOD) parameters based on the innovation information, the fuzzy logic adaptive system (FLAS) is designed for dynamically adjusting the softening factor according to the change in vehicle dynamics. GPS navigation processing using the AFSTKF will be simulated to validate the effectiveness of the proposed strategy. The performance of the proposed scheme will be assessed and compared with those of conventional EKF and STKF

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 5 )