Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Region-Based Multimodal Image Fusion Using ICA Bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cvejic, N. ; Centre for Commun. Res., Bristol Univ. ; Bull, David ; Canagarajah, N.

In this paper, we present a novel multimodal image fusion algorithm in the independent component analysis (ICA) domain. Region-based fusion of ICA coefficients is implemented, where segmentation is performed in the spatial domain and ICA coefficients from separate regions are fused separately. The ICA coefficients from given regions are consequently weighted using the Piella fusion metric in order to maximize the quality of the fused image. The proposed method exhibits significantly higher performance than the basic ICA algorithm and also shows improvement over other state-of-the-art algorithms

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 5 )