By Topic

Elastic waves in a fluid-loaded, semi-infinite axisymmetric rod

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yuhui Ai ; Dept. of Geol. Sci., Michigan Univ., Ann Arbor, MI

In a fluid-loaded, semi-infinite axisymmetric rod, a free shear stress boundary condition on the circular cross-sectional end introduces complicated, nondispersive waves in the solid. They are composed of a pulse wave, which has the same waveform as the transmitted one and travels at speed c1, and different kinds of pulse trains, each of which travels along the rod at the speed of either c1 or radic2c2, where c1 and c2 are the propagating speeds of the longitudinal and transversal bulk waves, respectively. Furthermore, one can conclude from the solutions to the boundary conditions that c1 and radic2c2 are the only phase speeds of nondispersive waves. Frequency equations associated with these waves are established, and the solutions are solved and discussed analytically and numerically. The acoustic field in the fluid is also fully discussed, and it is more complicated than a single outgoing Hankel function as described for an infinite rod. The acoustic energy coupling between the solid and the fluid and the end reflection and transmission are quantified as well. In the end, experimental examinations of the echo spectra, using an aluminum rod immersed in the water and air, fully confirm the numerical solutions to the frequency equations

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:54 ,  Issue: 4 )