By Topic

Precise trajectory tracking of a piezoactuator-driven stage using an adaptive backstepping control scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsin-jang Shieh ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien ; Chia-hsiang Hsu

In this paper, an adaptive backstepping control scheme is proposed for precise trajectory tracking of a piezoactuator-driven stage. Differential equations consisting of dynamics of a linear motion system and a hysteresis function are investigated first for describing the dynamics of motion of the piezoactuator-driven stage with hysteresis behavior. Then, to identify the uncertain parameters designed in the differential equations, the Powell method of a numerical optimization technique is used. From the differential equations identified, an equivalent state-space model is developed, then a linear state-space model through a state transformation is established. In the linear state-space model, the hysteresis function is approximated by the first three terms of a Taylor series expansion. Based on the linear state-space model, we developed an adaptive backstepping control for the trajectory tracking. By using the proposed control approach to trajectory tracking of the piezoactuator-driven stage, improvements in the tracking performance, steady-state error, and robustness to disturbance can be obtained. To validate the proposed control scheme, a computer-controlled, single-axis piezoactuator-driven stage with a laser displacement interferometer was set up. Experimental results illustrate the feasibility of the proposed control for practical applications in trajectory tracking

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:54 ,  Issue: 4 )