By Topic

Memory Management Support for Multi-Programmed Remote Direct Memory Access (RDMA) Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Magoutis, K. ; IBM T. J. Watson Res. Center, Hawthorne, NY

Current operating systems offer basic support for network interface controllers (NICs) supporting remote direct memory access (RDMA). Such support typically consists of a device driver responsible for configuring communication channels between the device and user-level processes but not involved in data transfer. Unlike standard NICs, RDMA-capable devices incorporate significant memory resources for address translation purposes. In a multi-programmed operating system (OS) environment, these memory resources must be efficiently shareable by multiple processes. For such sharing to occur in a fair manner, the OS and the device must cooperate to arbitrate access to NIC memory, similar to the way CPUs and OSes cooperate to arbitrate access to translation lookaside buffers (TLBs) or physical memory. A problem with this approach is that today's RDMA NICs are not integrated into the functions provided by OS memory management systems. As a result, RDMA NIC hardware resources are often monopolized by a single application. In this paper, I propose two practical mechanisms to address this problem: (a) Use of RDMA only in kernel-resident I/O subsystems, transparent to user-level software; (b) An extended registration API and a kernel upcall mechanism delivering NIC TLB entry replacement notifications to user-level libraries. Both options are designed to re-instate the multiprogramming principles that are violated in early commercial RDMA systems

Published in:

Cluster Computing, 2005. IEEE International

Date of Conference:

Sept. 2005