By Topic

Processes Distribution of Homogeneous Parallel Linear Algebra Routines on Heterogeneous Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cuenca, J. ; Departamento de Ingenieria y Tecnologia de Computadores, Univ. de Murcia ; Garcia, L.P. ; Gimenez, D. ; Dongarra, J.

This paper presents a self-optimization methodology for parallel linear algebra routines on heterogeneous systems. For each routine, a series of decisions is taken automatically in order to obtain an execution time close to the optimum (without rewriting the routine's code). Some of these decisions are: the number of processes to generate, the heterogeneous distribution of these processes over the network of processors, the logical topology of the generated processes,... To reduce the search space of such decisions, different heuristics have been used. The experiments have been performed with a parallel LU factorization routine similar to the ScaLAPACK one, and good results have been obtained on different heterogeneous platforms

Published in:

Cluster Computing, 2005. IEEE International

Date of Conference:

Sept. 2005