By Topic

Quantum Trajectories with Dynamic Loop Scheduling and Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carino, R.L. ; Center for Comput. Sci., Mississippi State Univ. ; Banicescu, I. ; Pabico, J.P. ; Rashid, M.

The study of many problems in quantum mechanics is based on finding the solution to the time-dependent Schrodinger equation which describes the dynamics of quantum-mechanical systems composed of a particle of mass m moving in a potential V. Based on the hydrodynamic interpretation of quantum mechanics by Bohm (1952), an unstructured grid approach, the quantum trajectory method (QTM) was developed by Lopreore and Wyatt (1999). Derivatives needed for updating the equations of motion are obtained using curve-fitting by a moving weighted least squares algorithm, and analytically differentiating the least squares curves. The calculations involve computationally-intensive parallel loops with nonuniform iterate execution times

Published in:

Cluster Computing, 2005. IEEE International

Date of Conference:

Sept. 2005