Cart (Loading....) | Create Account
Close category search window
 

Fast Query Processing by Distributing an Index over CPU Caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoqin Ma ; Coll. of Comput. & Inf. Sci., Northeastern Univ., Boston, MA ; Cooperman, G.

Data intensive applications on clusters often require requests quickly be sent to the node managing the desired data. In many applications, one must look through a sorted tree structure to determine the responsible node for accessing or storing the data. Examples include object tracking in sensor networks, packet routing over the Internet, request processing in publish-subscribe middleware, and query processing in database systems. When the tree structure is larger than the CPU cache, the standard implementation potentially incurs many cache misses for each lookup; one cache miss at each successive level of the tree. As the CPU-RAM gap grows, this performance degradation will only become worse in the future. We propose a solution that takes advantage of the growing speed of local area networks for clusters. We split the sorted tree structure among the nodes of the cluster. We assume that the structure will fit inside the aggregation of the CPU caches of the entire cluster. We then send a word over the network (as part of a larger packet containing other words) in order to examine the tree structure in another node's CPU cache. We show that this is often faster than the standard solution, which locally incurs multiple cache misses while accessing each successive level of the tree. The principle is demonstrated with a cluster configured with Pentium III nodes connected with a Myrinet network. The new approach is shown to be 50% faster on this current cluster. In the future, the new approach is expected to have a still greater advantage as networks grow in speed, and as cache lines grow in length (greater cache miss penalty). This can be used to successfully overcome the inherent memory latency associated with cache misses

Published in:

Cluster Computing, 2005. IEEE International

Date of Conference:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.